Part Number Hot Search : 
GFC440 OP132W 5ETTT 74HCT583 74HCT583 MX66U512 ZX84C3 SMAJ3
Product Description
Full Text Search
 

To Download IRF40DM229 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ir mosfet strongir fet? IRF40DM229 application ? ? brushed motor drive applications ? ? bldc motor drive applications ?? battery powered circuits ? ? half-bridge and full-bridge topologies ? ? synchronous rectifier applications ? ? resonant mode power supplies ? ? or-ing and redundant power switches ? ? dc/dc and ac/dc converters ? ? dc/ac inverters benefits ? ? improved gate, avalanche and dynamic dv/dt ruggedness ? ? fully characterized capacitance and avalanche soa ? ? enhanced body diode dv/dt and di/dt capability ? ? lead-free, rohs compliant base part number package type standard pack orderable part number form quantity IRF40DM229 directfet ? mf tape and reel 4800 IRF40DM229 v dss 40v r ds(on) typ. 1.4m ?? max 1.85m ?? i d (silicon limited) 159a fig 1. typical on-resistance vs. gate voltage fig 2. maximum drain current vs. case temperature directfet ? isometric ? ? mf directfet ? n-channel power mosfet ? 1 2016-3-2 dd s g s s s 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ? ) i d = 97a t j = 25c t j = 125c 25 50 75 100 125 150 t c , case temperature (c) 0 25 50 75 100 125 150 175 i d , d r a i n c u r r e n t ( a )
? IRF40DM229 2 2016-3-2 notes: ? mounted on minimum footprint full size board with metalized back and with small clip heatsink. ? used double sided cooling , mount ing pad with large heatsink. absolute maximum ratings ?? ? symbol parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) 159 i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) 101 a i dm pulsed drain current ?? 636 ? p d @t c = 25c maximum power dissipation 83 w linear derating factor 0.67 w/c v gs gate-to-source voltage 20 v t j operating junction and -55 to + 150 c t stg storage temperature range avalanche characteristics ?? e as (thermally limited) single pulse avalanche energy ?? 72 e as (tested) single pulse avalanche energy tested value ?? 195 i ar avalanche current ?? see fig.15,16, 23a, 23b a e ar repetitive avalanche energy ?? mj thermal resistance ?? ? symbol parameter typ. max. units r ? ja junction-to-ambient ?? ??? 45 c/w r ? ja junction-to-ambient ?? 12.5 ??? r ? ja junction-to-ambient ?? 20 ??? r ? jc junction-to-case ??? ??? 1.5 r ? j-pcb junction-to-pcb mounted 1.0 ??? mj e as (thermally limited) single pulse avalanche energy ?? 169 static @ t j = 25c (unless otherwise specified) ??? ? ?? symbol parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 40 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 32 ??? mv/c reference to 25c, i d = 1.0ma ? r ds(on) static drain-to-source on-resistance ??? 1.4 1.85 m ?? v gs = 10v, i d = 97a ? ??? 3.0 ??? ? v gs = 6.0v, i d = 49a ? v gs(th) gate threshold voltage 2.2 2.8 3.9 v v ds = v gs , i d = 100a i dss drain-to-source leakage current ??? ??? 1.0 a v ds = 40v, v gs = 0v ??? ??? 150 v ds = 40v, v gs = 0v, t j = 125c i gss gate-to-source forward leakage ??? ??? 100 v gs = 20v gate-to-source reverse leakage ??? ??? -100 v gs = -20v r g internal gate resistance ??? 1.0 ??? ? na ? tc measured with thermocouple mounted to top (drain) of part. ? surface mounted on 1 in. square cu board (still air). ? mounted to a pcb with small clip heatsink (still air) ? ? mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)
? IRF40DM229 3 2016-3-2 d s g dynamic @ t j = 25c (unless otherwise specified) ???? ? symbol parameter min. typ. max. units conditions gfs forward transconductance 87 ??? ??? s v ds = 10v, i d = 97a q g total gate charge ??? 107 161 nc i d = 97a q gs gate-to-source charge ??? 30 ??? v ds =20v q gd gate-to-drain ("miller" ) charge ??? 39 ??? v gs = 10v ? q sync total gate charge sync. (q g - q gd ) ??? 68 ??? t d(on) turn-on delay time ??? 16 ??? ns v dd = 20v t r rise time ??? 66 ??? i d = 30a t d(off) turn-off delay time ??? 54 ??? r g = 2.7 ? t f fall time ??? 54 ??? v gs = 10v ? c iss input capacitance ??? 5317 ??? pf v gs = 0v c oss output capacitance ??? 866 ??? v ds = 25v c rss reverse transfer capacitance ??? 575 ??? ? = 1.0mhz c oss eff. (er) effective output capacitanc e (energy related) ??? 1037 ??? v gs = 0v, v ds = 0v to 32v ? c oss eff. (tr) effective output capaci tance (time relat ed) ??? 1237 ??? v gs = 0v, v ds = 0v to 32v ? diode characteristics ???? ? symbol parameter min. typ. max. units conditions i s continuous source current ??? ??? 83 a mosfet symbol (body diode) showing the i sm pulsed source current ??? ??? 636 integral reverse (body diode) ? p-n junction diode. v sd diode forward voltage ??? ??? 1.2 v t j = 25c,i s = 97a, v gs = 0v ? dv/dt peak diode recovery ? ??? 3.2 ??? v/ns t j =150c,i s = 97a,v ds = 40v t rr reverse recovery time ??? 26 ??? ns t j = 25 c v r = 34v ??? 27 ??? t j = 125c i f = 97a q rr reverse recovery charge ??? 24 ??? t j = 25c di/dt = 100a/s ? ??? 23 ??? t j = 125c i rrm reverse recovery current ??? 1.2 ??? a t j = 25c nc notes: ?? repetitive rating; pulse width limited by max. junction temperature. ? limited by t j max, starting t j = 25c, l = 0.015mh r g = 50 ? , i as = 97a, v gs =10v. ? i sd 97a, di/dt 862a/s, v dd v( br)dss , t j 150c. ?? pulse width 400s; duty cycle 2%. ?? c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . ?? c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss . ?? when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniques refer to application note # an-994. http://www.irf.com/technical-info/appnotes/an-994.pdf ? r ? is measured at t j approximately 90c. ? this value determined from sample failure population, starting t j = 25c, l= 0.015mh, r g = 50 ? , i as = 97a, v gs =10v. ?? limited by t j max, starting t j = 25c, l = 1mh r g = 50 ? , i as = 18a, v gs =10v.
? IRF40DM229 4 2016-3-2 fig 6. normalized on-resistance vs. temperature fig 5. typical transfer characteristics fig 4. typical output characteristics fig 3. typical output characteristics fig 8. typical gate charge vs . gate-to-source voltage fig 7. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v ? 60s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v ? 60s pulse width tj = 150c 4.5v -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 97a v gs = 10v 0.1 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 20 40 60 80 100 120 140 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v vds= 8.0v i d = 97a 3 4 5 6 7 8 9 v gs , gate-to-source voltage (v) 1.0 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 150c v ds = 10v ? 60s pulse width
? IRF40DM229 5 2016-3-2 fig 10. maximum safe operating area fig 11. drain-to-source breakdown voltage fig 9. typical source-drain diode forward voltage fig 13. typical on-resistance vs. drain current fig 12. typical c oss stored energy 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , temperature ( c ) 39 41 43 45 47 49 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 1.0ma -5 0 5 10 15 20 25 30 35 40 45 v ds, drain-to-source voltage (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 e n e r g y ( j ) 0 25 50 75 100 125 150 175 200 i d , drain current (a) 0 2 4 6 8 10 12 14 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) vgs = 5.5v vgs = 6.0v vgs = 7.0v vgs = 8.0v vgs = 10v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc
? IRF40DM229 6 2016-3-2 fig 14. maximum effective transient thermal impedance, junction-to-case fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1.avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 23a, 23b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = tav f z thjc (d, t av ) = transient thermal resistance, see figures 13) pd (ave) = 1/2 ( 1.3bvi av ) = ? t/ z thjc i av = 2 ? t/ [1.3bvz th ] e as (ar) = p d (ave) t av ?? 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r ma l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ?? j = 25c and tstart = 125c. allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 125c and tstart =25c (single pulse) 25 50 75 100 125 150 starting t j , junction temperature (c) 0 10 20 30 40 50 60 70 80 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 97a fig 15. avalanche current vs. pulse width
? IRF40DM229 7 2016-3-2 fig 17. threshold voltage vs. temperature fig 21. typical stored charge vs. dif/dt fig 18. typical recovery current vs. dif/dt -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 100a i d = 250a i d = 1.0ma i d = 1.0a 100 200 300 400 500 600 700 di f /dt (a/s) 0 2 4 6 8 10 i r r m ( a ) i f = 65a v r = 34v t j = 25c t j = 125c 100 200 300 400 500 600 700 di f /dt (a/s) 0 2 4 6 8 10 i r r m ( a ) i f = 97a v r = 34v t j = 25c t j = 125c 100 200 300 400 500 600 700 di f /dt (a/s) 25 50 75 100 125 150 175 200 q r r ( n c ) i f = 65a v r = 34v t j = 25c t j = 125c 100 200 300 400 500 600 700 di f /dt (a/s) 25 50 75 100 125 150 175 200 225 q r r ( n c ) i f = 97a v r = 34v t j = 25c t j = 125c fig 20. typical stored charge vs. dif/dt fig 19. typical recovery current vs. dif/dt
? IRF40DM229 8 2016-3-2 fig 22. peak diode recovery dv/dt test circuit for n-channel hexfet ? power mosfets fig 23a. unclamped inductive test circuit r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v fig 25a. gate charge test circuit t p v (br)dss i as fig 23b. unclamped inductive waveforms fig 24a. switching time test circuit fig 24b. switching time waveforms vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 25b. gate charge waveform vdd ?
? IRF40DM229 9 2016-3-2 note: for the most current drawing please refer to ir website at http://www.irf.com/package/ directfet? board footprint, mf outline (medium size can, e-designation) please see directfet ? application note an-1035 for all details regarding the assembly of directfet ? . this includes all recommendations for stencil and substrate designs. g = gate d = drain s = source g d s dd d s s
? IRF40DM229 10 2016-3-2 directfet? outline dimension, mf outline (medium size can, e-designation) please see directfet ? application note an-1035 for all details regarding the assembly of directfet ? . this includes all recommendations for stencil and substrate designs. directfet? part marking note: for the most current drawing please refer to ir website at http://www.irf.com/package/ dimensions are shown in millimeters (inches) code a b c d e f g h j l 0.017 0.085 0.156 0.044 0.018 0.024 max 0.250 0.38 2.035 3.85 1.08 0.35 0.58 min 6.25 4.80 0.42 2.165 3.95 1.12 0.45 0.62 max 6.35 5.05 0.015 0.080 0.152 0.043 0.023 0.014 min 0.189 0.246 metric imperial dimensions 0.93 0.97 1.28 1.32 0.038 0.037 0.052 0.050 j1 0.023 0.62 0.58 0.024 0.033 0.965 0.835 0.038 k 0.199 m p 0.028 0.007 0.59 0.08 0.70 0.17 0.023 0.003 n 0.02 0.08 0.0008 0.003 part number batch number date code line above the last character of the date code indicates "lead-free" gate marking logo
? IRF40DM229 11 2016-3-2 directfet? tape & reel dimension (showing component orientation). ? note: for the most current drawing please refer to ir website at http://www.irf.com/package/ loaded tape feed direction note: controlling dimensions in mm code a b c d e f g h imperial min 0.311 0.154 0.469 0.215 0.201 0.256 0.059 0.059 max 8.10 4.10 12.30 5.55 5.30 6.70 n.c 1.60 min 7.90 3.90 11.90 5.45 5.10 6.50 1.50 1.50 metric dimensions max 0.319 0.161 0.484 0.219 0.209 0.264 n.c 0.063 note: controlling dimensions in mm std reel quantity is 4800 parts. ordered as IRF40DM229. reel dimensions max n.c n.c 0.520 n.c n.c 0.724 0.567 0.606 imperial min 330.0 20.2 12.8 1.5 100.0 n.c 12.4 11.9 standard option (qty 4800) code a b c d e f g h max n.c n.c 13.2 n.c n.c 18.4 14.4 15.4 min 12.992 0.795 0.504 0.059 3.937 n.c 0.488 0.469 metric
? IRF40DM229 12 2016-3-2 published by infineon technologies ag 81726 mnchen, germany ? infineon technologies ag 2015 all rights reserved. important notice the information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (?beschaffenheitsgarantie?). with respect to any examples , hints or any typical values stated herein and/or any information regarding the application of the product, infineon technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any thi rd party. in addition, any information given in this document is subject to customer?s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer ?s products and any use of the product of infineon technologies in customer?s applications. the data contained in this document is exclusively intended for technically trai ned staff. it is the responsibility of customer?s technical departments to evaluate the suit ability of the product for the intended application and the completeness of the product information given in this document with respect to such application. for further information on the product, technology, delivery terms and conditions and prices please contact your nearest infineon technologies office ( www.infineon.com ). warnings due to technical requirements products may contain danger ous substances. for information on the types in question please contact your nearest infineon technologies office. except as otherwise explicitly appr oved by infineon technologies in a written document signed by authorized representatives of infineon technologies, infineon technolog ies? products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. qualification information ? ? qualification level ? industrial * (per jedec jesd47f ?? guidelines) moisture sensitivity level dfet 1.5 msl1 (per jedec j-std-020d ??) rohs compliant yes ? qualification standards can be found at international rectifier?s web site: http://www.irf.com/product-info/reliability ?? applicable version of jedec standard at the time of product release. * industrial qualification standards except autoclave test conditions.


▲Up To Search▲   

 
Price & Availability of IRF40DM229

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X